

Recent Advances in Measuring Precious Metals in Alloys

Rakesh Kumar Bhan - Managing Director
Fischer Measurement Technologies (India) Pvt. Ltd.
29.07.2022

Helmut Fischer Group

- Head Quarter in Sindelfingen, Germany
- 25 subsidiaries worldwide, presence in more than 100 countries.
- Leading supplier of EDXRF instruments for precious metal analysis and decorative coating thickness measurement.

Fischer India- 100% subsidiary established in Year 2006.

Offering Innovative Solutions for more than 70 years

Stages of Gold Processing

Role of Analysis

- Verifying the purity of gold and other precious metals.
- Identification of various elements within the alloy and their composition.
- Identifying the impurities for measurement of adulteration within the alloy.
- Quality and Process Control.
- Measurement of decorative coating thickness.

INDIA G LD CONFERENCE

Analytical Methods of Precious Metal Analysis

- Various analytical methods for gold and alloy analysis
 - Acid Test
 - Fire Assaying
 - ICP-OES (requires sample to be atomized to enable excitation)
 - X-ray Fluorescence Analysis (XRF)

Why EDXRF Method?

- Fast, Quick, Accurate and Non Destructive.
- Requires no or very less sample preparation.
- Measurement is done directly on solid sample and does not rely on acid digestion.
- Quantitative Analysis of gold alloys including Platinum Group Metals (Pt, Pd, Rh, Ru, Ir, Os).
- Easy to use and practically feasible.
- Quantification of all metals of interest in one single measurement.
- Advances in detector and signal processing sensitivity has improved precision and accuracy
 of the measurement comparable to fire assay method.

Major Components of an EDXRF X-Ray tube: generates the X-ray beam Micro Focus tube with Beryllium Window SHUTTER opens / closes Camera: **Primary Filter:** High Resolution CCD Camera PRIMARY FILTER Fixed or Multiple Changeable CAMERA optimizes excitation radiation Filters like Nickel, Aluminum, Mylar etc. directs picture to the camera Collimator: SDD Detector / Si PIN Detector/PC: Fixed or Motorised Changeable COLLIMATOR/APERTURE Resolutions: 140eV/ 180eV/ 800eV the opening that defines the Primärstrahlung Collimators like -Ø 0.2 mm (7.9 mils), Ø 0,6 mm (23.6 mils), Ø 1 mm (39.4 mils), Ø 3 mm (118 mils) others on request COATING MATERIAL BASE MATERIAL K-alpha

8

INDIA G LD CONFERENCE

Factors Affecting Accuracy and Reproducibility of XRF Measurements

Factors related to Instrument:

- Resolution of the Detector
- Pulse Processor
- Collimator
- Measuring distance
- Measuring time
- Calibration

External Factors:

- Sample Homogeneity
- Environmental Conditions
- Positioning of the Sample
- Focusing
- Measurement Approach

Detectors

Proportional Counter Detector:

- High count rates due to the big entrance window.
- E-resolution ~ 900 eV (Mn-Ka)
- Used for simple coating thickness applications.

Silicon Pin Detector:

- Lower cps due to a smaller entrance window.
- E-resolution ~ 170-200 eV (Mn-Ka)
- Advantages for "complex" applications (e.g. thin layers, trace elements, composition analysis etc.

Silicon Drift Detector (SDD):

- Semiconductor device (functionality like a PIN-Diode, with a ring structure for the Si-Chip)
- Better energy resolution: ~ 135 eV for 10mm² and 30mm² Chip
- Higher count rates (optimal at ≤ 150'000 cps) while still having a good energy resolution and peak form (shape)
- Better sensitivity for light elements (at low energies)
- Applications: Thin layers, trace elements, light elements

New Detector Technology - SDD with DPP+

Function	Existing Setup 20/30 mm ² SDD + old DPP electronics	New Setup (SuperSense) SDD + DPP: DPP+
Max. energy resolution Fe ₅₅	< 165 eV	< 140 eV
Time to peak	1.6 μs	0.4 μs
Top width	0.4 μs	0.125 μs
Count rate in cps	up to 100.000	up to 500.000
Diagnostic features	Bus Errors	 Tracking power supply voltages and currents BIAS voltage cooler current detector temperature HT operation

350.000

300.000

250.000

200.000

150.000

500.000 50.000

Recorded

Better Absolute standard deviation (precision) with high countrate and good energy resolution

High countrate with good energy resolution

- New SDD Detector with DPP+
- Old DPP

Measurement Spot Size

$$M = c \cdot (d0 + d1) / d0 + s0 \cdot d1 / d0$$

The size of the measurement spot depends on

- size of collimator c,
- focal spot of the anode s0
- ratio d0/d1.
- Small Measurement spot allows for the best determination of inhomogeneity's
- Large Measurement spot allows for low influence of inhomogeneity

Advanced Optical Collimation Systems

mono capillary 100 – 300

~ 10

poly capillary

~ 10 - 60

~ 500

mirror optics

20 x 50

~ 10

spot size [µm] amplification

Measuring Distance - Md

- Automatic correction of the reading
- Any md in the valid calibrated range can be chosen
- Signal (count rate) ~ 1 / (measuring distance)²
 repeatability ~ √count rate
- → keep measuring distance small!

Measuring Time

- Repeatability: s ~ √measuring time
- Four times longer measuring time will improve the repeatability by a factor of 2.
- Sometimes very long measuring time will not further improve the standard deviation. It is better to utilise the mean value of several measurements
- With advances in signal processing electronics, very accurate results can be obtained with a measuring time of 15 - 30 secs.

Calibration

 To ensure valid results, measuring equipment shall be calibrated against measurement standards traceable to international or national measurement standards.

- Ensures Traceability of measurement results
- Helps to minimize the Systematic Error
- Integrity of the calibration standards is very important

Thank You for Your Attention!

Rakesh Bhan

Fischer Measurement Tech. India Pvt. Ltd.

Plot No.138/1, City Centre,

Hinjewadi Phase 1, Pune

+91 9766309851

rakesh@fischerindia.com

