

MMTC-PAMP: Introduction of Master Alloy

Mr. Ankur Goyal , President(Works)

MMTC PAMP INDIA PVT. LTD.

29TH July 2022

Content

- MMTC-PAMP Introduction
- Manufacturing
 - Jewellery Manufacturing Casting and Handmade
 - Major Defects & Cause
- Master alloys
 - What is master alloy
 - Range of Master Alloys
 - Key process steps and advantage of Master ally
 - Properties of metal used for making master alloys
 - Major defects and remediation plan
 - Feedback from Customers related to Trees Casting
- Gold Critical for good quality products

MMTC-PAMP India Pvt. Ltd. Introduction

A one-stop solution for Precious Metals

80 MN+ CUSTOMERS

16 TONNES

SCRAP

\$12 Mn

INVESTMENT IN NEW PLANT

\$1 Mn
PROFIT IN TRADING

12

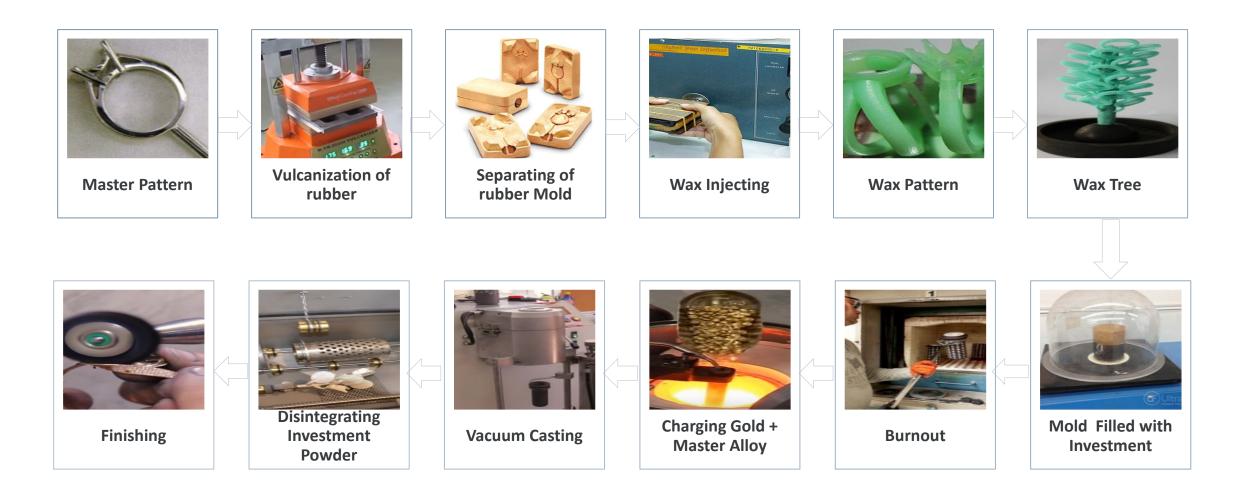
RETAIL CENTRES

500+

EMPLOYEES

ANNUAL INSTALLED
REFINING CAPACITY OF

300T


GOLD &

600T

SILVER

Jewellery Manufacturing – Casting - Handmade

Investment Casting or Lost Wax casting

Investment Casting And Handmade Process

Investment Casting Process

- 1. Master Pattern
- 2. Vulcanization of Rubber
- 3. Separating of Rubber Mold
- 4. Wax injecting
- 5. Wax Pattern
- 6. Wax Tree
- 7. Mold Filling with Investment
- 8. Burnout
- 9. Charging Gold + Master Alloy
- 10. Vaccum Casting
- 11. Disintegrating Investment Powder
- 12. Finishing

Major Casting Defect

1. Porosity

- Si & Zn Combination helps to reduce it
- Proper sprue location or its design can reduce it significantly

4. Rough Surface

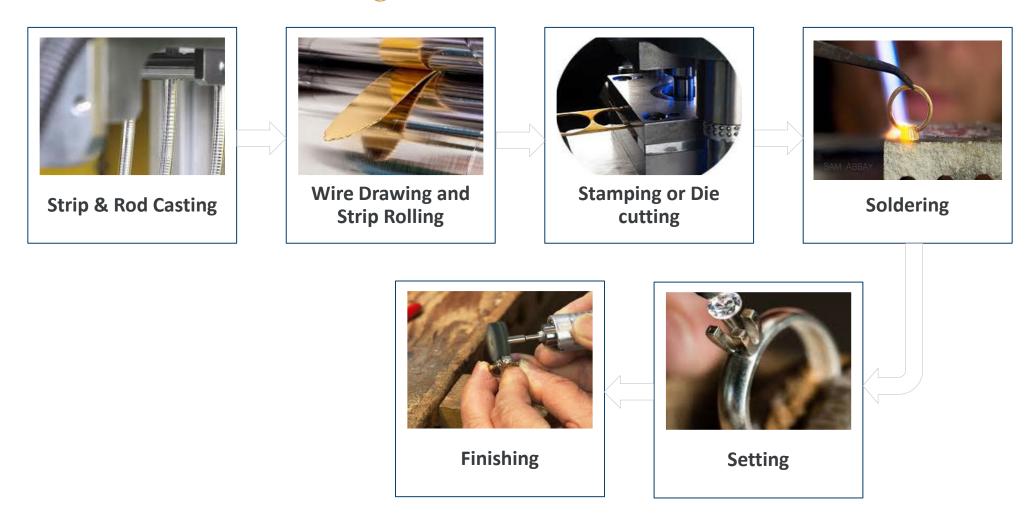
 Si helps to improve fluidity during casting and reduces rough surface

2. Hard spot

- Over use of Silicon and Zinc may lead to Hard Spot also
- Gold Should be free from Fe & Ir Group

5. Oxide Inclusion

- Oxygen in metal can cause Copper Oxidation & lead to Inclusion
- Excess Zn in alloy can lead to inclusion



3. Cracking

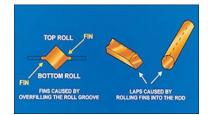
- High Si in Alloy causes Cracking
- Gold and Alloy should be Free From Pb, Se & Te

Handmade Manufacturing Process

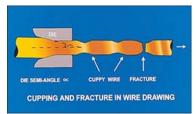
Investment Casting And Handmade Process

Handmade Process

- Charging Gold+Master Alloy
- 2. Strip & Rod Casting
- 3. Wire Drawing & Strip Rolling
- 4. Stamping or Die Cutting
- 5. Soldering
- 6. Setting
- 7. Finishing


Major Handmade Defect

Machine Adjustment


- 4. Fins and laps
- Improper Metal feeding

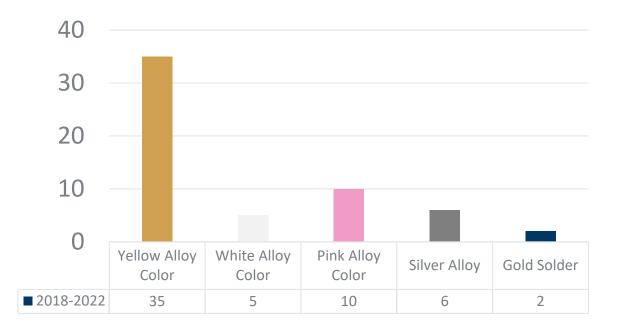
- 2. Roll bending
- Machine Adjustment

- 5. Drawing
- Improper annealing
- Boron as grain refiner

3. Edge cracking

- Higher Oxygen in metal
- Higher Casting temp.
- Si, Pb , Te & Se Should be Zero




Master Alloy

What is Master Alloy

- Traditionally Jewelry is manufactured by casting in open / closed (Inert) system or handcrafting using strips or rods.
- In all the above operation, 24 karat Gold is converted to lower karatage i.e. 22kt, 18kt, 14kt, 10kt & 9kt by addition of elements like silver, copper, Zinc, other metals in small quantity which act as deoxidizer and grain refiner in the alloy. The alloyed metal used is known as **Master Alloy**.
- Master Alloys are available to produce gold of variety colors e.g. Yellow Gold, White Gold, Rose Gold, Green gold etc.

Gold Karat System

Range of Master Alloy in MMTC-PAMP

CODE	colon	WTA	ADDITION	4 -04	CDECIAL COMMENTS		
CODE	COLOR	KT*	APPLICATION	Ag%	SPECIAL COMMENTS		
SWY001	Rich Yellow	9-14K	Casting	23.00	Good Luster, High Reusability		
SWY014	Bright Yellow	9-22K	All purpose	11.50	Economical, Good Shine		
SWY040	Std. Yellow	9-22K	All purpose	13.00	Good Luster, Good Workability		
SWY037	Rich Yellow	9-18K	Mechanical	19.75	High Performance, Good Shine		
14K-1	8K YELLOW	GOLD	CASTING	ALLOY			
CODE	COLOR	KT*	APPLICATION	Ag%	SPECIAL COMMENTS		
SWY002	Yellow	14K	Casting	20.50	Good Luster & Reusability		
SWY002	Rich Yellow	18K	Casting	20.50	Good Luster & Reusability		
18K Y	ELLOW GOL	D CAS	STING & ME	CHANIC	CAL ALLOY		
CODE	COLOR	KT*	APPLICATION	Ag%	SPECIAL COMMENTS		
SWY003	Deep Yellow	18K	Casting	44.50	High Performance & Luster		
SWY034	Deep Yellow	18K	Casting	47.00	Reusability, Good Shine		
SWY039	Rich Yellow	18K	Casting	51.00	Excellent Workability & Shine,		
SWY007	Std. Yellow	18K	Mechanical	33.00	Recom. for Bangels, Good Shine		
18K -	22K YELLOW	GOLI	D CASTING	& MECH	HANICAL ALLOY		
CODE	COLOR	KT*	APPLICATION	Ag%	SPECIAL COMMENTS		
SWY023	Yellow	18K	Casting	26.00	Good Luster, Good Fluidity		
	Deep Yellow	22K	Casting	26.00	Good Luster, Good Fluidity		
SWY023A	Yellow	18K	Casting	26.00	High Performance, Low Loss		
	Deep Yellow	22K	Casting	26.00	High Performance, Low Loss		
SWY028	Greenish Yellow	18K	Casting	65.10	Resuability, Tarnish Resistant		
	Greenish Yellow	22K	Casting	65.10	Resuability, Tarnish Resistant		
SWY029	Greenish Yellow	18K	Casting	64.00	Hard with good surface luster		
	Greenish Yellow	22K	Casting	64.00	Hard with good surface luster		
SWY031	Reddish Yellow	18K	Casting	17.00	Economical , High Reusability		
	Reddish Yellow	22K	Casting	17.00	Economical , High Reusability		
SWY033B	Light Yellow	18K	Casting	2.00	Good shine, Economical		
	Deep Yellow	22K	Casting	2.00	Good shine, Economical		
SWY009	Reddish Yellow	18K	Mechanical	16.00	Economical, Good Shine		
	Reddish Yellow	22K	Mechanical	16.00	Economical, Good Shine		
SWY019	Yellow	18K	Mechanical	20.00	High Performance, Good Shine		
	Rich Yellow	22K	Mechanical	20.00	High Performance, Good Shine		
SWY004	Yellow	18K	All purpose	39.00	High Performance & Reusability		
	Deep Yellow	22K	All purpose	39.00	High Performance & Reusability		
SWY004B	Yellow	18K	All purpose	39.00	High Performance, Low Loss		
	Deep Yellow	22K	All purpose	39.00	High Performance, Low Loss		
22K Y	ELLOW GOLI	D CAS	TING & ME	CHANIC	CAL ALLOY		
CODE	COLOR	KT*	APPLICATION	Ag%	SPECIAL COMMENTS		
SWY005	Deep Yellow	22K	Casting	34.00	Good Performance & Reusabilit		

CODE	COLOR	KT*	APPLICATION	Ag%	SPECIAL COMMENTS
SWY013	Reddish Yellow	22K	Casting	8.50	Good for Filigiri Work & Shine
SWY027	Rich Yellow	22K	Casting	6.10	Hard alloy, Good Shine
SWY033	Reddish Yellow	22K	Casting	2.00	Low Silver, High Fluidity
SWY006	Deep Yellow	22K	Mechanical	40.00	Good Luster, High Reusability
SWY015	Reddish Yellow	22K	Mechanical	4.00	Economical, Good for Stamping
SWY016	Reddish Yellow	22K	All purpose	10.00	Hard, High Surface Luster
SWY018	Rich Yellow	22K	Mechanical	18.00	Good for Stamping ,Wire
SWY017	Reddish Yellow	22K	All purpose	5.00	Good for Stamping, Strip & Wire
14K-1	8K WHITE G	OLD C	ASTING &	МЕСНА	NICAL ALLOY
CODE	COLOR	KT*	APPLICATION	Ag%	SPECIAL COMMENTS
SWW001	Std. White	18K	Casting	4.00	High Fluidity, Stone-in-Place
SWW002	Std. White	14K	Casting	15.00	Stone-in-Place, Good Whiteness
SWW003	Off-White	14-18K	Casting	10.00	Low Nickel, High Reusability
OK-18	K WHITE GO	ID CA	STING ALL	OY	
CODE	COLOR	KT*	APPLICATION	Ag%	SPECIAL COMMENTS
	Std. White		Casting	1.00	Low silver, Soft Workability
OV 21	K PINK GOLI	CAC	TINIC 9 ME	CHANIC	7.41
CODE	COLOR	KT*	APPLICATION	Ag%	SPECIAL COMMENTS
SWP013	Deep Pink	18K	All purpose	4.15	High Reusability & Workability
SWP003	Pink		Casting	9.00	Medium Silver, User Friendly
SWP004	Light Pink		Casting	15.00	High Silver, Low De-ox
SWP005	Pink		Casting	6.50	Suitable for Stone in Place
	Light Pink		Casting	6.50	High Reusability & Workability
SWP001	Deep Pink		All purpose	4.50	Excellent Workability, Low Silve
SWP002	Pink		All purpose	6.00	Low Silver, European 5N Color
SWP011	Light Pink		All purpose	18.00	Good for Sheet, Wire, High Silve
SWP012	Pink		Casting	10.00	User Friendly, Good Reusability
SWP012B	Pink		Casting	10.00	Good Workability & Reusability
925" 9	STERLING SIL	VFR A	LLOY		
CODE	COLOR	100000000000000000000000000000000000000	APPLICATION	Cu%	SPECIAL COMMENTS
SWS001	Ultra White	925	Casting	61.00	Tarnish Resistant, High De-ox
SWS002	White	925	Casting	67.00	Economical , High Fluidity
SWS003	White	925	Mechanical	92.00	Tarnish Resistant, Good De-ox
SWS004	White	925	Mechanical	93.00	Spring Hard Alloy, Anti Tarnish
SWS005	White	925	Casting	76.00	High Performance & Reusability
SWS007	Super White	925	All Purpose	63.00	High Fluidity & Anti Tarnish, De

Master Alloy Mgf. processes controls bring added advantage to your products

OUR PROCESS

Manufactured using **99999 Silver** and **premium quality raw material**

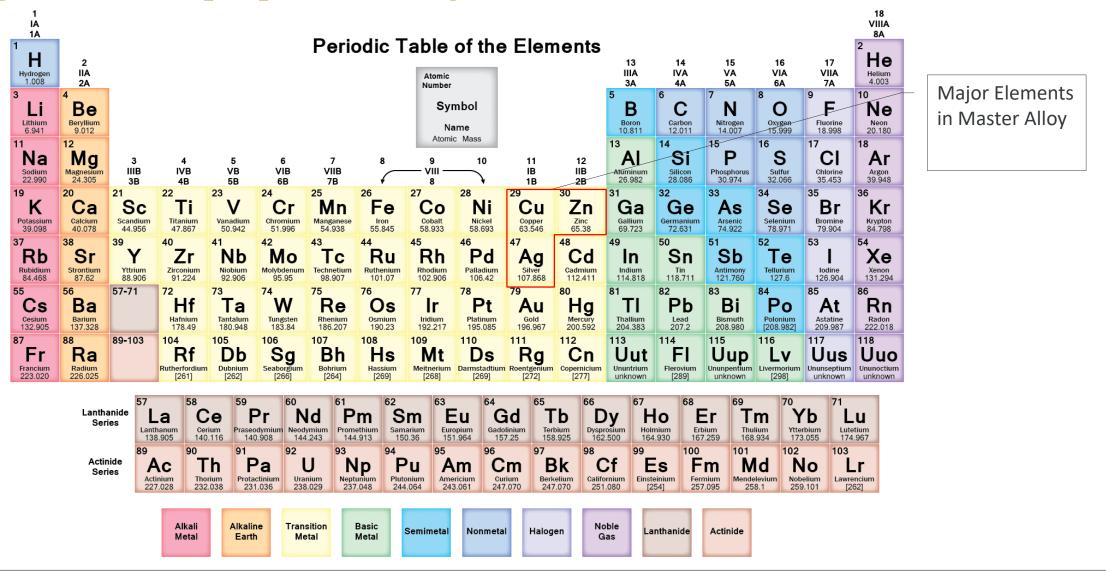
Produced in strictly controlled environment, giving alloy free of **lead**, cadmium, or any other noxious elements

Stringent quality control parameters

YOUR ADVANTAGE

Attain

- High Productivity
- Good luster
- Homogeneity
- Less tarnish
- Minimum gold loss
- Good Hardness & toughness in 22K casting and handmade products



Access 24x7 technical assistance to ascertain and eliminate any issues

Engage continuously with experienced metallurgists and laboratory chemists to develop new products and solutions

Ingredient and properties of ingredient

Elements Role in Alloy

Nickel a- bleaching agent and turns yellow Silver - provides lustre & used to control the Ni Ag color for a desired appearance gold into white appearance Copper - increases hardness of the pure gold Boron - deoxidiser and perhaps acts as grain В Cu while still making it ductile for casting. Copper refiner too via dispersion hardening tends to turn gold color pink Zinc -Provides more fluidity of the melt, Cobalt - grain refiner which increases Co Zn improves cast-ability; It improves tensile hardness due to its dispersion effect strength and improves color too Silicon-Increases the fluidity of the melt. It Indium - Increases fluidity and ductility; lowers Si In decreases the sensitivity that gold alloy has melting temperature towards oxygen. Gallium –has hardening effect Ga Ge Germanium - acts as an effective de-oxidizer

General Casting Issue:

General Casting Issue						
Types of Defects	Reason					
Types of Defects	Contribution of Alloy composition					
Gas Porosity	•Deoxidizer like Silicon in presence of Zinc produces a reciprocating effect to reduce mold-metal interface reaction time during casting by reducing surface tension.					
	•This reduces gas porosity caused by Sulphur dioxide from investment powder CaSO4 → CaO + SO2 + ½O2;					
	but the balance of Si, Zn in the alloy content is an important criterion else it can lead to inclusion issues.					
	• The other major contributor to gas porosity is unburnt carbon from poor burnout; In alloys with Nickel, it can lead to aggravated gas porosity					
Shrinkage Porosity	•Alloys with high Nickel or Cobalt require higher casting temperature which may attribute to this defect •Flask and casting temperature combination needs to be optimized to avoid this •Proper sprue location or its design can reduce it significantly					
Inclusion as Hard spots	•Oxygen in used copper and silver may lead to complex Silver copper oxide which will form hard spots •Over use of Silicon and Zinc may lead to oxide too •If Iridium is present in alloy as grain refiner, it may lead to hard spots if the melt is not homogenized at recommended temperature.					

General Casting Issue:

	General Casting Issue						
Types of Defects	Reason Contribution of Alloy composition						
	•The copper used in alloy making should be oxygen free and the oxygen content should be less than 10 ppm.						
	•Moreover, the silver used in alloy should have oxygen less than 50 ppm to avoid oxide formation in casting stage. Oxygen in silver leads to copper						
Oxide Inclusion	oxide inclusions, mostly as a silver/copper oxide eutectic.						
	•Following may happen due to this: -						
	a. The inclusions cause hard spots as found during polishing						
	b. Gas pores are created due to unstable oxide dissociation at solidification.						
	c. Bubbles and pores are formed when copper oxide containing silver is annealed in a reducing atmosphere						
	•Imbalance between Cu : Si ratio can lead to Si segregation at grain boundary;						
Cracking	• leading to cracking during casting; so the addition of Si is crucial and specially in which form is it added						
	•Use of Iridium in alloys can form clusters leading to cracking during mechanical work						
	•Small zinc additions in alloy reduce the reaction with the investment and, in this way, reduce gas porosity too. Probably, the formation of a dense layer of zinc oxide at the surface of the solidifying melt prevents the interaction of the melt with the investment						
Roughness and oxidation	•This reduces surface roughness and may help in reducing gold loss during pre-polish.						
	•The Jewellery surface is more lustrous and free from surface oxidation						

Customer case study

Customer	I	2	3
Jewelry Manufactured	Studded 14k & 18k casting (diamonds)	CNC bangles 22K	93 Sterling Silver
Previously Using Alloy	Competitor	Copper and silver	Competitor
MMTC-PAMP Alloy used	SWY002 & SWY004	SWY017B	SWS002
Problem Faced	Microporosity	Low Lustre, Hardness in bangle	Low Hardness & low Reusability
Solution	In first interaction changed sprue loaction and design	In first interaction, we studied his requirements of hardness & lustre	In first interaction, we understood his requirement of hardness & reusability; did hardness testing of present sample under Vickers.
	Developed SWY002 with Si as Deoxidiser and with Silver content to meet his price expectation; colour was not acceptable	Developed SWY017B with cobalt and boron for grain refining and deoxidising; silver was kept low in order to meet his price expectation;	Developed SWS002 with higher hardness ;yet there was issue in reusability such as cracking
	Changed Copper silver ratio within same price range and supplied new sample	Hardness was still required	Increased Silicon solubility by adjusting Copper Silicon ratio to reduce cracking and increased Zinc slightly to compensate for oxidation
	wanted more lustre; added Germanium and submitted new sample within two working days	We changed the copper content in order to increase solid solution hardening and supplied new sample in 3 working days	Formulation was acceptable with customer
	The formulation was successful and now commercial conversion to 10kgs per month	Acceptable for customer ; commercial conversion to 10kgs per month	commercial conversion to 90-100kgs per month

What are the disadvantages of Locally refined Gold

Impurities leading to poor finish and higher rejection

Chemical method if not controlled will add impurities to the Metal

	MI	MTC-PAMP E	Indian Refiners				
Element	999.9 (Sponge)	999 (Conversion)	995 (Conversion)	Refiner 1	Refiner 2	Refiner 3	Refiner 4
Gold (Au) ‰	999.96	999.08	995.08	994.92	995.05	995.05	995.00
Silver (Ag) (ppm)	29	900	4903	4747.6	4791	4584	4872
Palladium (Pd)					5	38	35.5
Platinum (Pt)						11	
Aluminium (AI)					2		
Antimony (Sb)				5.5			
Arsenic (As)				6			
Copper (Cu)	11.6	14.9	13.2	161.4	98	40	14
Iron (Fe)				42	15		27
Lead (Pb)						11.5	42
Manganese (Mn)						2	
Silicon (Si)					3	4	
Tin (Sn)				89.5	15		5.8
Tellurium (Te)					5	14	3.7
Zinc (Zn)				20.8			

PRODUCT COMPARISON

WE STAND OUT

18 Y Cast tree with MMTC -PAMP gold free from impurities

Poor 18 Y tree casted using locally refined gold with high impurity

Smooth, oxidation free 18 K pink gold strip casted with MMTC-PAMP gold having no impurity

18 K Strip with local gold having oxidized surface finish due to high impurity content

PRODUCT COMPARISON

WE STAND OUT

22 K Finished ring from MMTC-PAMP gold having high lustre and finish

22 K ring from local gold having broken shank due to impurities

LOCAL ALLOY

Bullion bar with MMTC-PAMP gold

Slags on bullion bar with local gold

Feedback from Customers related to Trees Casting

Casting Tree From Local Gold

Casting Tree photos Shared by Customer Using MMTC-PAMP Alloy

SWY001-14K

SWY004-22K

SWY003-18K

SWY014-22K

THANK YOU

This presentation is confidential and should not be replicated or distributed without permission.