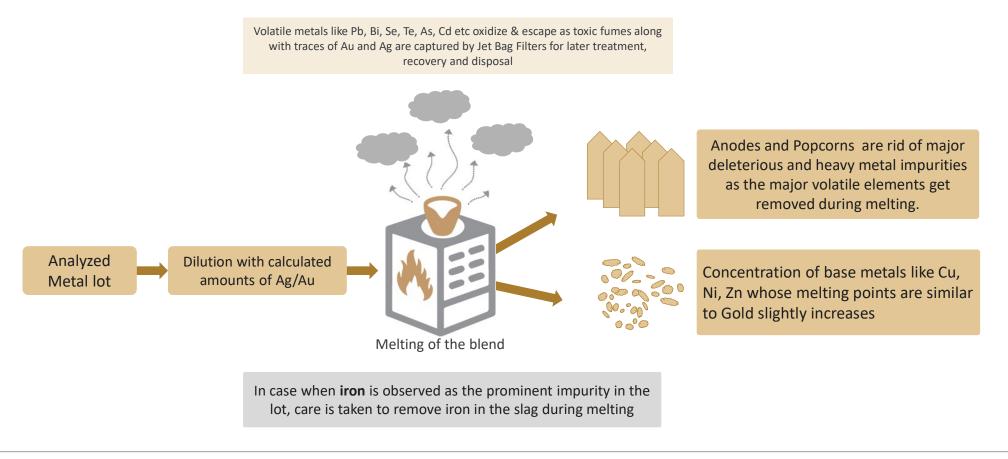
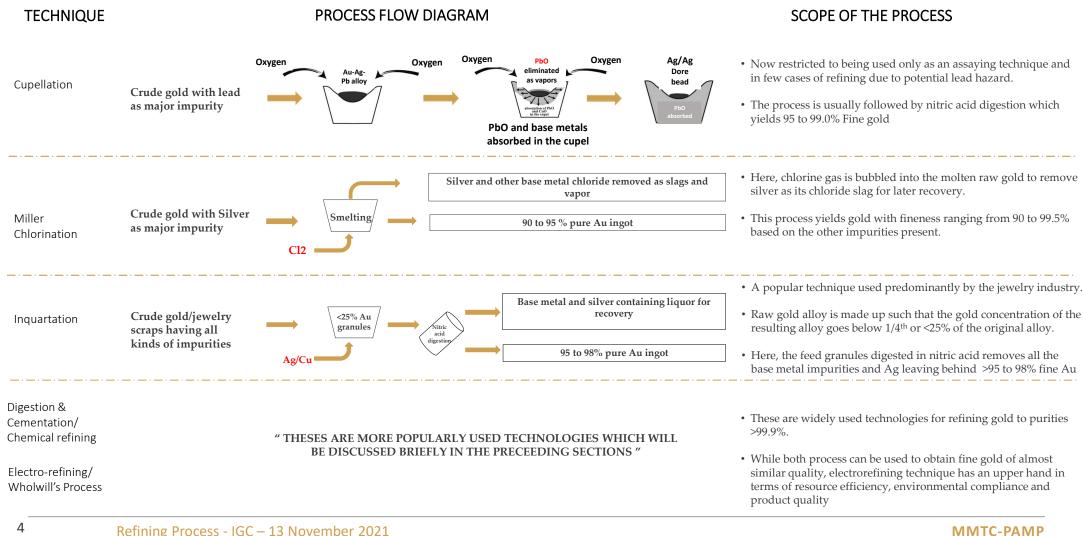
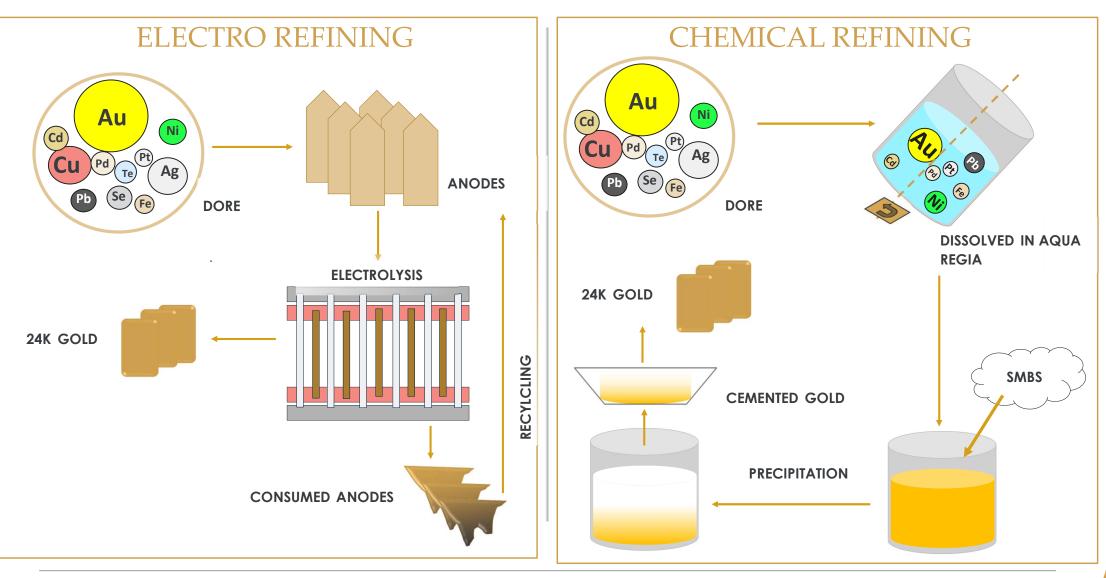

Swiss Excellence. Made in India.

Recent Trends in refining through chemical & electrolytic method

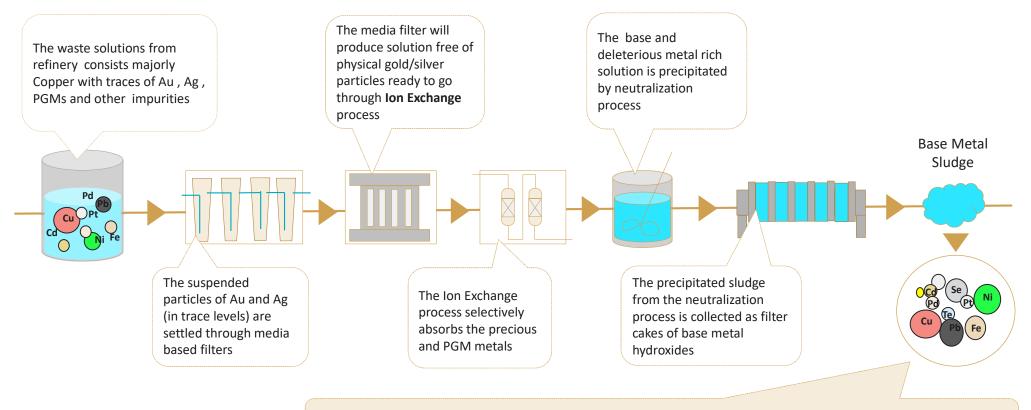

MMTC-PAMP Refinery

An MKS PAMP GROUP company


Base metal – Status at Receipt


Base metal – Status in Melting operation

Major techniques in gold refining


Refining Process - IGC - 13 November 2021

Refining Process - IGC – 13 November 2021

MMTC-PAMP

Base metal – Status in Ecology operation

The base metal rich sludge so generated consists of copper as major component while all other categories of metals that had escaped the exhaustive refining process including precious and PGMs at almost undetectable traces

What are the advantages & disadvantages of both processes?

Parameters

7

Electro Refining

Chemical Refining

Scale of Operation	Suitable for large scale	Suitable for small scale as large scale requires big reactors
Fineness of Refined Gold	99.99% & above	99.95% maximum
Impurities in Refined Gold	Adhering to limits	Presence of deleterious elements is common
Operating cost	Low labour and chemical cost per unit of production; electricity cost is higher	Higher operating unit ; electricity cost is lower
Inventory in Process	High inventory carrying cost	Cost of inventory in WIP is much lower
Effluent Generation	Controlled generation	Consumption of chemicals is more; generates more effluent during washing and final effluent per unit of production is higher
Quality of Jewellery produced	Higher productivity and lower rejection rate due to absence of deleterious element	Manual intervention leads to presence of impurities like Fe, Pb, Cu which lead to hard spots , oxidation , brittleness in final product

Resource and energy consumption comparison (basis 200 Kg per day)

Particulars

Electro Refining

Chemical Refining

	600 Kg	3 Times greater	200 Kg	As per o require	•	
HCI	2.7 L/Kg	"approx. 350 – 400 L	2.7 L/Kg	"As per	stoichiometric	
HNO3	0.7 L/Kg		0.7 L/Kg		ment, 800 – 900 L als are consumed to	
NaOH	NA	gold "			duce 200 kg of gold."	
SMBS	NA		1 Кg/Кg			
Equipment		1000 L, rectangular tank ; 24 V, 1000 A DC Rectifier 1500 L capacity reacted		city reactor		
	5		6			
Effluent generated		naterial	11 L/Kg raw	material	4.4 times greater	
	22 Rs/Kg	3.6 Times greater	6 Rs/Kg			
	HNO3 NaOH	HCI 2.7 L/Kg HNO3 0.7 L/Kg NaOH NA SMBS NA 1000 L, rectan Rectifier 5 2.5 L/Kg raw m	HCl 2.7 L/Kg "approx. 350 – 400 L chemicals required to produce 200 kg of gold " SMBS NA 1000 L, rectangular tank ; 24 V, 1000 A DC Rectifier 5 2.5 L/Kg raw material	HCl2.7 L/Kg"approx. 350 - 400 L chemicals required to produce 200 kg of gold "2.7 L/KgHNO30.7 L/Kg0.7 L/Kg0.7 L/KgNaOHNAgold "0.5 I/KgSMBSNA1 Kg/Kg1000 L, rectangular tank ; 24 V, 1000 A DC Rectifier1500 L capar5611 L/Kg raw22 Ps/Kg0.2 L/Kg0.5 L/Kg	HCl2.7 L/Kg"approx. 350 – 400 L chemicals required to produce 200 kg of gold "2.7 L/Kg"As per require chemicals 0.7 L/KgHNO30.7 L/Kg"approx. 350 – 400 L chemicals required to produce 200 kg of gold "2.7 L/Kg"As per require chemicals 0.5 I/KgSMBSNA1 Kg/Kg1000 L, rectangular tank ; 24 V, 1000 A DC Rectifier1500 L capacity reactor562.5 L/Kg raw material11 L/Kg raw material	

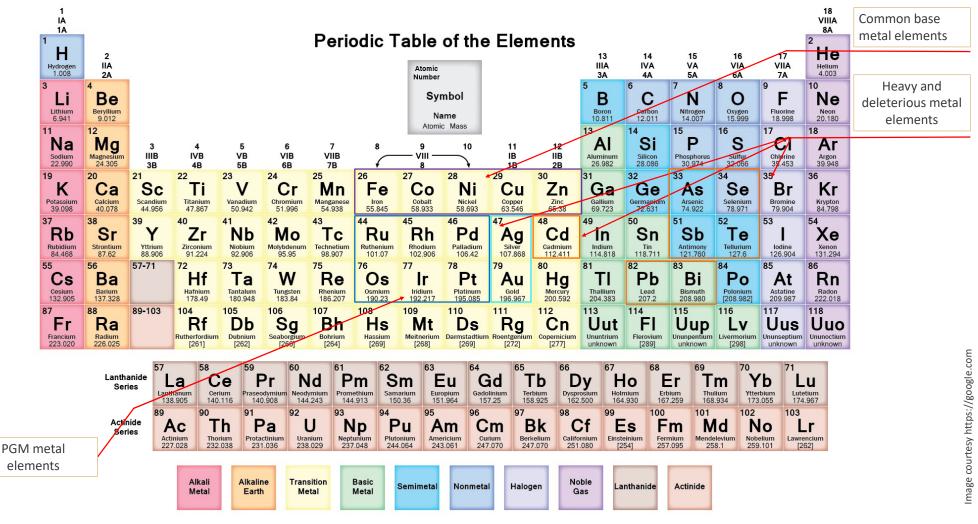
What are the different hazards & mitigation associated with both processes?

Toxic Emissions

Toxic Emissions	Mitigation
Nox Untreated Nitric oxide and Nitrogen dioxide fumes , contribute to the formation of smog and acid rain.	 Use of efficient fume condensers to aid acid recovery from liberated fumes. Use of high efficiency multistage scrubbers.
Sox Sulfuric acid, is the main component of acid rain. Sulfur dioxide irritates the respiratory tract and aggravates conditions such as asthma and chronic bronchitis.	 Use of selective catalytic reduction to convert the NOx fumes to harmless N2 and H2O (Experimental technology).
Liquid Effluents The effluent generated from above processes are highly acidic (ph. 1 or less) and also contain large quantity of deleterious metals in form of their soluble salts e.g. chlorides, nitrates, sulphates etc.	 A series of chemical processes involving media filtration, ion absorption, neutralization and precipitation are adopted prior to sending the process effluent to ETP ensures that all the heavy metals are removed completely.
Solid Wastes Solid waste generated from the treatment of the above effluents contains Copper and traces of gold and silver	 The solid waste generated are a rich source of base metals and must be treated for recovery .

Impurity difference

	ELE	CTRO REF	INING	CHI	EMICA	L REFI	NING
	MMTC-PAMP Bullion			Indian Refiners			
Element	999.9 (Sponge)	999 (Conversion)	995 (Conversion)	Refiner 1	Refiner 2	Refiner 3	Refiner 4
Gold (Au) ‰	999.96	999.08	995.08	994.92	995.05	995.05	995.00
Silver (Ag) (ppm)	29	900	4903	4747.6	4791	4584	4872
Palladium (Pd)					5	38	35.5
Platinum (Pt)		er				11	
Aluminium (Al)					2		
Antimony (Sb)				5.5			
Arsenic (As)	2 			6			
Copper (Cu)	11.6	14.9	13.2	161.4	98	40	14
Iron (Fe)				42	15		27
Lead (Pb)		0				11.5	42
Manganese (Mn)			16 2			2	
Silicon (Si)		0			3	4	
Tin (Sn)		9k 10	8 2	89.5	15		5.8
Tellurium (Te)		0			5	14	3.7
Zinc (Zn)				20.8			



Impurities lead to poor finish and higher rejection

Chemical method if not controlled will add impurities to the Metal

10 Refining Process - IGC – 13 November 2021

Refining Process - IGC – 13 November 2021

Effects of Base metal and PGM impurities in various stages of refining

Sr No	BM/PGM	Melting	Chemical/Electrochemical refining	Ecology	ASTMASTM Limits in PPM for 999.9 fine Au	Bullion
1	Silver	No effect in melting process	When in excess causes passivation of anodes/popcorns arresting the reaction.	No notable effect	90	Sulfur tarnishing , bleaches only low caratage alloys
2	Platinum and Palladium	No effect in melting process	Selective precipitation or ion exchange to separate this from Gold and Silver at suitable stage	Traces of this metal goes into the filter press sludge and to be recovered by recycling	Pt– Not Specified Pd - 50	Comply ASTM
3	Aluminium	May oxidize and separate out as dross	May precipitate as its hydroxide and accumulate on cathode if the electrolyte pH is not controlled	Precipitated as its hydroxide during effluent neutralization process	Not Specified	Strong oxide former. Results in brittleness
4	As/Sb	Generates toxic fumes that are captured by jet bag filters which are later on collected carefully and treated for recovery and safe disposal	The traces that makes its way into the electrolyte are tapped out by bleeding the spent solution	The accumulated As in the effluent concentrates into the base metal sludge	30/Not Specified	Rarely manifest in final product

12 Refining Process - IGC – 13 November 2021

Effects of Base Metals in various stages of refining

Sr No	Base Metal	Melting	Chemical/Electrochemical Refining	Ecology	ASTM Limits in PPM for 999.9 fine Au	Bullion
5	Copper	No severe impact on melting due to its lower toxicity and miscibility with gold	Cu helps in electrolysis as it improves ionic conductivity. Excess Cu built up in electrolyte affects gold purity through co-deposition. Its removed periodically by bleeding and replenishment	Copper gets precipitated as hydroxide which is sent for recycling	50	Cu may manifest into to finished product as trace impurity
6	Iron	Iron primarily gets removed as slags from the molten metal, generates a lot precious metal containing metallic slags that are hard to process	Its removed periodically by bleeding and replenishment	Iron joins the final base metal sludge stream as chloride or nitrate	Not Specified	Trace Iron levels in the product may results in hardness & brittleness in cast products
7	Lead	Lead primarily gets removed as oxides during various melting stages	Removed as chlorides and nitrates with help of chemicals	The Lead also reach base metal sludge	20	Not allowed in Bullion product
8	Manganese		The oxides formed by the action of acids tend to precipitate and collect along with silver chloride slimes.		3	May cause stress corrosion in the final product.
.3	Refir	ning Process - IGC – 13 November 20	021			MMTC-PAM

Effects of Heavy & Deleterious Metals in various stages of refining

Sr No	H & D Metals	Melting	Chemical/Electrochemical refining	Ecology	ASTM Limits in PPM for 999.9 fine Au	Bullion
9	Silicon	When present in large quantities can be slagged out by the addition of borax	May passivate the anodes/popcorns if present in large quantities.	No significant impact	50	Major causative of surface defects in the finished good, promotes cracking.
10	Tin	slag when in minor quantities, when	Major threat in both chemical as well as electro refining , forms insoluble complexes that co-precipitates/accumulates over the product.		10	May cause brittleness of the finished good.
11	Te	Generates a peculiar fume smelling like garlic toxic when inhaled	into the electrolyte are tapped	The tellurium may reach the base metal sludges. Complete removal of tellurium in final discharge water is difficult	Not Specified	Rarely manifest in final product, if present may lead to embrittlement of the product.
12	Zn	that are collected by the jet bag filters along with	Zinc does not co-deposit due to its high reduction potential. Its easily get removed in the impaired electrolyte	It gets removed as chlorides, nitrates and hydroxide in the sludge	Not Specified	Rarely manifests in final bullion, if present may cause fire cracking of the product.

MMTC-PAMP

PRODUCT COMPARISON

Electrolytic refined gold

18 Y Cast tree with gold free from impurities

Poor 18 Y tree casted using locally refined gold with high impurity

Chemical refined gold

Smooth, oxidation free 18 K pink gold strip casted with gold having no impurity

18 K Strip with local gold having oxidized surface finish due to high impurity content

15

PRODUCT COMPARISON

Electrolytic refined gold

22 K Finished ring having high lustre and finish

Chemical refined gold

22 K ring from local gold having broken shank due to impurities

Bullion bar

16

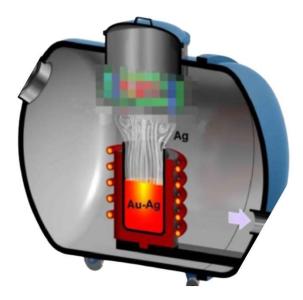
Slags on bullion bar with local gold

Refining Process - IGC – 13 November 2021

New Technology – Acidless Separation (ALS)

GREEN TECHNOLOGY – No use of Chemicals

LOW OPERATING COST – Very Limited manual operation


SAFE & USER FRIENDLY – Batch Process takes place in an enclosed volume & fully automated

FAST – Compared to other processes residence time of metal is low

SUSTAINABLE - No hazardous material is generated & pollution free

Acidless Separation Machine (ALS)

Refining Process - IGC – 13 November 2021

Consumer Testimonials

We prefer to use MMTC-PAMP 999 gold only in our jewellery manufacturing . It has remarkable consistency in weight and purity . Due to it electrolytic origin, the gold is impurity free and when used helps us to achieve very low repairs in manufacturing compared to local gold . It is always free from Iron and we could eliminate hard spots by using this gold . On the contrary , all local gold have to be refined first to make it Ir free which adds to the production cost.

> Mr. Priyanshu Gupta , Director , Shri Daksh Designer Jewels Pvt Ltd

We at Tanvi prefer to use MMTC-PAMP 999 gold for manufacturing jewllery. MMTC-PAMP gold has amazing consistency in its weight, purity and finish. By using MMTC-PAMP gold which is electrolytically refined defects such as hard spot, colour variation, cracks etc are greatly reduced. Our productivity improves significantly when we use MMTC-PAMP 999 gold.

> Mr. Bipin Viradiya , Founder and Chairman , Tanvi Goldcast

We prefer to use MMTC-PAMP 999 gold only for our jewllery manufacturing. The product has remarkable consistency in weight and purity. By using this gold, we get less defects and higher productivity compared to locally refined gold.

Mr. Amit Korat, Partner Design Creation, Surat

The gold refined from local market turns black when they melt it to make ingot while MMTC-PAMP gold is shiny. MMTC-PAMP gold is soft as mainly silver is used instead of copper and there is no problem of cracking. The gold is also higher in purity and weight.)

> Mr. Ravi Khandelwal Gold Wholesaler

> > ****

Research team

- Conceptualization of the paper
- Ankur Goyal : Metallurgist
- Debasish Bhattacharjee : Metallurgist
- Praveen Kumar Chemical Engineer
- Vishal Jodhani Metallurgist

THANK YOU

An MKS PAMP GROUP Company

This presentation is confidential and should not be replicated or distributed without the permission of MMTC-PAMP.